Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection.

Identifieur interne : 000202 ( Main/Exploration ); précédent : 000201; suivant : 000203

Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection.

Auteurs : Ning Jia [États-Unis] ; Mihaela C. Unciuleac [États-Unis] ; Chaoyou Xue [États-Unis] ; Eric C. Greene [États-Unis] ; Dinshaw J. Patel [États-Unis] ; Stewart Shuman [États-Unis]

Source :

RBID : pubmed:31740608

Descripteurs français

English descriptors

Abstract

Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Here we report cryoelectron microscopy (cryo-EM) structures of AdnAB in three functional states: in the absence of DNA and in complex with forked duplex DNAs before and after cleavage of the 5' single-strand DNA (ssDNA) tail by the AdnA nuclease. The structures reveal the path of the 5' ssDNA through the AdnA nuclease domain and the mechanism of 5' strand cleavage; the path of the 3' tracking strand through the AdnB motor and the DNA contacts that couple ATP hydrolysis to mechanical work; the position of the AdnA iron-sulfur cluster subdomain at the Y junction and its likely role in maintaining the split trajectories of the unwound 5' and 3' strands. Single-molecule DNA curtain analysis of DSB resection reveals that AdnAB is highly processive but prone to spontaneous pausing at random sites on duplex DNA. A striking property of AdnAB is that the velocity of DSB resection slows after the enzyme experiences a spontaneous pause. Our results highlight shared as well as distinctive properties of AdnAB vis-à-vis the RecBCD and AddAB clades of bacterial DSB-resecting motor nucleases.

DOI: 10.1073/pnas.1913546116
PubMed: 31740608
PubMed Central: PMC6900545


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection.</title>
<author>
<name sortKey="Jia, Ning" sort="Jia, Ning" uniqKey="Jia N" first="Ning" last="Jia">Ning Jia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Structural Biology Program, Sloan Kettering Institute, New York, NY 10065.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Structural Biology Program, Sloan Kettering Institute, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Unciuleac, Mihaela C" sort="Unciuleac, Mihaela C" uniqKey="Unciuleac M" first="Mihaela C" last="Unciuleac">Mihaela C. Unciuleac</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Molecular Biology Program, Sloan Kettering Institute, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Xue, Chaoyou" sort="Xue, Chaoyou" uniqKey="Xue C" first="Chaoyou" last="Xue">Chaoyou Xue</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biophysics, Columbia University, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Greene, Eric C" sort="Greene, Eric C" uniqKey="Greene E" first="Eric C" last="Greene">Eric C. Greene</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biophysics, Columbia University, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Patel, Dinshaw J" sort="Patel, Dinshaw J" uniqKey="Patel D" first="Dinshaw J" last="Patel">Dinshaw J. Patel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Structural Biology Program, Sloan Kettering Institute, New York, NY 10065; pateld@mskcc.org s-shuman@ski.mskcc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Structural Biology Program, Sloan Kettering Institute, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shuman, Stewart" sort="Shuman, Stewart" uniqKey="Shuman S" first="Stewart" last="Shuman">Stewart Shuman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065; pateld@mskcc.org s-shuman@ski.mskcc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Molecular Biology Program, Sloan Kettering Institute, New York</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31740608</idno>
<idno type="pmid">31740608</idno>
<idno type="doi">10.1073/pnas.1913546116</idno>
<idno type="pmc">PMC6900545</idno>
<idno type="wicri:Area/Main/Corpus">000193</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000193</idno>
<idno type="wicri:Area/Main/Curation">000193</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000193</idno>
<idno type="wicri:Area/Main/Exploration">000193</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection.</title>
<author>
<name sortKey="Jia, Ning" sort="Jia, Ning" uniqKey="Jia N" first="Ning" last="Jia">Ning Jia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Structural Biology Program, Sloan Kettering Institute, New York, NY 10065.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Structural Biology Program, Sloan Kettering Institute, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Unciuleac, Mihaela C" sort="Unciuleac, Mihaela C" uniqKey="Unciuleac M" first="Mihaela C" last="Unciuleac">Mihaela C. Unciuleac</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Molecular Biology Program, Sloan Kettering Institute, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Xue, Chaoyou" sort="Xue, Chaoyou" uniqKey="Xue C" first="Chaoyou" last="Xue">Chaoyou Xue</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biophysics, Columbia University, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Greene, Eric C" sort="Greene, Eric C" uniqKey="Greene E" first="Eric C" last="Greene">Eric C. Greene</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biophysics, Columbia University, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Patel, Dinshaw J" sort="Patel, Dinshaw J" uniqKey="Patel D" first="Dinshaw J" last="Patel">Dinshaw J. Patel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Structural Biology Program, Sloan Kettering Institute, New York, NY 10065; pateld@mskcc.org s-shuman@ski.mskcc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Structural Biology Program, Sloan Kettering Institute, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shuman, Stewart" sort="Shuman, Stewart" uniqKey="Shuman S" first="Stewart" last="Shuman">Stewart Shuman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065; pateld@mskcc.org s-shuman@ski.mskcc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Molecular Biology Program, Sloan Kettering Institute, New York</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Adenylyl Imidodiphosphate (metabolism)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Cryoelectron Microscopy (MeSH)</term>
<term>DNA Breaks, Double-Stranded (MeSH)</term>
<term>DNA, Single-Stranded (metabolism)</term>
<term>Endodeoxyribonucleases (chemistry)</term>
<term>Endodeoxyribonucleases (genetics)</term>
<term>Endodeoxyribonucleases (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Models, Molecular (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycobacterium smegmatis (chemistry)</term>
<term>Mycobacterium smegmatis (genetics)</term>
<term>Nucleic Acid Heteroduplexes (MeSH)</term>
<term>Protein Domains (MeSH)</term>
<term>Single Molecule Imaging (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN simple brin (métabolisme)</term>
<term>Adenylyl imidodiphosphate (métabolisme)</term>
<term>Adénosine triphosphate (métabolisme)</term>
<term>Cassures double-brin de l'ADN (MeSH)</term>
<term>Cryomicroscopie électronique (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Endodeoxyribonucleases (composition chimique)</term>
<term>Endodeoxyribonucleases (génétique)</term>
<term>Endodeoxyribonucleases (métabolisme)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Hydrolyse (MeSH)</term>
<term>Hétéroduplexes d'acides nucléiques (MeSH)</term>
<term>Imagerie de molécules uniques (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycobacterium smegmatis (composition chimique)</term>
<term>Mycobacterium smegmatis (génétique)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Endodeoxyribonucleases</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Endodeoxyribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Adenylyl Imidodiphosphate</term>
<term>Bacterial Proteins</term>
<term>DNA, Single-Stranded</term>
<term>Endodeoxyribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Mycobacterium smegmatis</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Endodeoxyribonucleases</term>
<term>Ferrosulfoprotéines</term>
<term>Mycobacterium smegmatis</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycobacterium smegmatis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Endodeoxyribonucleases</term>
<term>Mycobacterium smegmatis</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN simple brin</term>
<term>Adenylyl imidodiphosphate</term>
<term>Adénosine triphosphate</term>
<term>Endodeoxyribonucleases</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Cryoelectron Microscopy</term>
<term>DNA Breaks, Double-Stranded</term>
<term>Hydrolysis</term>
<term>Models, Molecular</term>
<term>Mutation</term>
<term>Nucleic Acid Heteroduplexes</term>
<term>Protein Domains</term>
<term>Single Molecule Imaging</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cassures double-brin de l'ADN</term>
<term>Cryomicroscopie électronique</term>
<term>Domaine catalytique</term>
<term>Domaines protéiques</term>
<term>Hydrolyse</term>
<term>Hétéroduplexes d'acides nucléiques</term>
<term>Imagerie de molécules uniques</term>
<term>Modèles moléculaires</term>
<term>Mutation</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Here we report cryoelectron microscopy (cryo-EM) structures of AdnAB in three functional states: in the absence of DNA and in complex with forked duplex DNAs before and after cleavage of the 5' single-strand DNA (ssDNA) tail by the AdnA nuclease. The structures reveal the path of the 5' ssDNA through the AdnA nuclease domain and the mechanism of 5' strand cleavage; the path of the 3' tracking strand through the AdnB motor and the DNA contacts that couple ATP hydrolysis to mechanical work; the position of the AdnA iron-sulfur cluster subdomain at the Y junction and its likely role in maintaining the split trajectories of the unwound 5' and 3' strands. Single-molecule DNA curtain analysis of DSB resection reveals that AdnAB is highly processive but prone to spontaneous pausing at random sites on duplex DNA. A striking property of AdnAB is that the velocity of DSB resection slows after the enzyme experiences a spontaneous pause. Our results highlight shared as well as distinctive properties of AdnAB vis-à-vis the RecBCD and AddAB clades of bacterial DSB-resecting motor nucleases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31740608</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>116</Volume>
<Issue>49</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection.</ArticleTitle>
<Pagination>
<MedlinePgn>24507-24516</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1913546116</ELocationID>
<Abstract>
<AbstractText>Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Here we report cryoelectron microscopy (cryo-EM) structures of AdnAB in three functional states: in the absence of DNA and in complex with forked duplex DNAs before and after cleavage of the 5' single-strand DNA (ssDNA) tail by the AdnA nuclease. The structures reveal the path of the 5' ssDNA through the AdnA nuclease domain and the mechanism of 5' strand cleavage; the path of the 3' tracking strand through the AdnB motor and the DNA contacts that couple ATP hydrolysis to mechanical work; the position of the AdnA iron-sulfur cluster subdomain at the Y junction and its likely role in maintaining the split trajectories of the unwound 5' and 3' strands. Single-molecule DNA curtain analysis of DSB resection reveals that AdnAB is highly processive but prone to spontaneous pausing at random sites on duplex DNA. A striking property of AdnAB is that the velocity of DSB resection slows after the enzyme experiences a spontaneous pause. Our results highlight shared as well as distinctive properties of AdnAB vis-à-vis the RecBCD and AddAB clades of bacterial DSB-resecting motor nucleases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Structural Biology Program, Sloan Kettering Institute, New York, NY 10065.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Unciuleac</LastName>
<ForeName>Mihaela C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Chaoyou</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Greene</LastName>
<ForeName>Eric C</ForeName>
<Initials>EC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Dinshaw J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Structural Biology Program, Sloan Kettering Institute, New York, NY 10065; pateld@mskcc.org s-shuman@ski.mskcc.org.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shuman</LastName>
<ForeName>Stewart</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-5034-6438</Identifier>
<AffiliationInfo>
<Affiliation>Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065; pateld@mskcc.org s-shuman@ski.mskcc.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>6PPJ</AccessionNumber>
<AccessionNumber>6PPR</AccessionNumber>
<AccessionNumber>6PPU</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA008748</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI064693</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM118026</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM126945</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004277">DNA, Single-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009692">Nucleic Acid Heteroduplexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25612-73-1</RegistryNumber>
<NameOfSubstance UI="D000266">Adenylyl Imidodiphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004706">Endodeoxyribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000266" MajorTopicYN="N">Adenylyl Imidodiphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020285" MajorTopicYN="N">Cryoelectron Microscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053903" MajorTopicYN="Y">DNA Breaks, Double-Stranded</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004277" MajorTopicYN="N">DNA, Single-Stranded</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004706" MajorTopicYN="N">Endodeoxyribonucleases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020102" MajorTopicYN="N">Mycobacterium smegmatis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009692" MajorTopicYN="N">Nucleic Acid Heteroduplexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072760" MajorTopicYN="N">Single Molecule Imaging</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DNA curtain</Keyword>
<Keyword MajorTopicYN="Y">DNA end resection</Keyword>
<Keyword MajorTopicYN="Y">cryoelectron microscopy</Keyword>
<Keyword MajorTopicYN="Y">homologous recombination</Keyword>
</KeywordList>
<CoiStatement>The authors declare no competing interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31740608</ArticleId>
<ArticleId IdType="pii">1913546116</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1913546116</ArticleId>
<ArticleId IdType="pmc">PMC6900545</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2002 Feb;43(4):823-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Struct Biol. 2005 Jun 28;5:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15985153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Sep 20;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27644322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Feb 15;22(4):512-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Jun;41(6):491-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27156117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jun;38(11):3721-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20185564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Apr 17;508(7496):416-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24670664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Jan;11(1):9-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Aug 20;27(16):2222-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18668125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2014 Aug;20:119-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24569169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Mar;39(6):2271-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Aug 22;500(7463):482-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23851395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 25;45(2):762-774</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Nov 16;131(4):694-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18022364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 18;409(6818):370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Sep 5;114(5):647-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Dec;72(4):642-71, Table of Contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2562-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23798400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 18;409(6818):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2015 Oct;197(19):3121-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26195593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 16;468(7326):983-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 22;285(4):2632-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2014;123:217-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24974030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Mar 21;31(6):1568-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Jan;79(2):316-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21219454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Jun 15;23(12):1423-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Nov 11;432(7014):187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15538360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Nov 5;285(45):34319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20736178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Dec 29;127(7):1349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17190599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Aug 3;371(1):66-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570399</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Jia, Ning" sort="Jia, Ning" uniqKey="Jia N" first="Ning" last="Jia">Ning Jia</name>
</region>
<name sortKey="Greene, Eric C" sort="Greene, Eric C" uniqKey="Greene E" first="Eric C" last="Greene">Eric C. Greene</name>
<name sortKey="Patel, Dinshaw J" sort="Patel, Dinshaw J" uniqKey="Patel D" first="Dinshaw J" last="Patel">Dinshaw J. Patel</name>
<name sortKey="Shuman, Stewart" sort="Shuman, Stewart" uniqKey="Shuman S" first="Stewart" last="Shuman">Stewart Shuman</name>
<name sortKey="Unciuleac, Mihaela C" sort="Unciuleac, Mihaela C" uniqKey="Unciuleac M" first="Mihaela C" last="Unciuleac">Mihaela C. Unciuleac</name>
<name sortKey="Xue, Chaoyou" sort="Xue, Chaoyou" uniqKey="Xue C" first="Chaoyou" last="Xue">Chaoyou Xue</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000202 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000202 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31740608
   |texte=   Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31740608" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020